Machine Learning Tasks/Object Detection (9) 썸네일형 리스트형 Non-maximum Suppression (NMS) YOLO와 같은 딥러닝을 이용한 object detection 은 입력 이미지를 몇 개의 grid 구역으로 나누고 각 grid 별 bounding box 를 제안하여 각 bound box의 위치, 크기, 물체가 담길 확률을 계산하는 방식으로 이루어집니다. Figure 1을 보면 입력 이미지를 7x7, 총 49개의 격자로 구분하고 각 격자 별로 두 개의 bounding box를 제안하고 각 bounding box 마다 1) bounding box의 중심 (x, y), 2) bounding box의 크기 (w, h), 3) bounding box 에 물체가 있을 확률을 예측합니다. 7x7x30 의 출력 텐서에서 2개의 bounding box 에 대한 예측 10개를 제외한 나머지 20개는 물체가 있을 때의 물.. 이전 1 2 다음